有一个 Nvidia Docker 可以简化系统的部署,而服务提供商(例如 AWS)可以提供不间断的通信通道、神经网络的计算能力以及用于扩展系统的便捷接口。
测试 #1:面部识别
用户使用相机创建存储在设备上的照片印记。 此生物特征印记使用 OpenCV 库进行转换和标准化。
使用照片识别人脸,并突出显示 OpenCV 检测到的所有 64 个地标。 生物识别验证标志包括从鼻梁到眼睛的距离和其他面部特征。
这些地标和人脸的剪切图像被传输到深度神经网络,该网络使用 TensorFlow 库进行训练。
神经网络处理完成后形成eDNA特征向量。特征向量收集特定人的生物特征。向量的长度通常为 2048 位,但实际向量长度取决于 DNN 架构。
在验证过程中,会发布 eDNA 并与之前形成的锚记录进行比较。逆向工程是不可能的,因为无法访问向量。生物识别系统将定期更新此锚记录以匹配个人不断变化的外观。
测试 #2:语音验证
用户通过麦克风提供语音样本,然后由 Librosa 库处理。该库读取音频,对其进行转换和转换,然后将生物识别信息传输到神经网络 (DNN)。
形成了一个 eDNA 特征向量(2048 位),它考虑了诸如音色、语调、节奏、音高等生物特征,以及神经网络被训练来响应的其他特征。